Inverse-square law
From Wikipedia, the free encyclopedia
(Redirected from Inverse square law)
Light and other electromagnetic radiation
This article may need to be wikified to meet Wikipedia's quality standards. Please help by adding relevant internal links, or by improving the article's layout. (October 2009)
The intensity (or illuminance or irradiance) of light or other linear waves radiating from a point source (energy per unit of area perpendicular to the source) is inversely proportional to the square of the distance from the source; so an object (of the same size) twice as far away, receives only one-quarter the energy (in the same time period).
More generally, the irradiance, i.e., the intensity (or power per unit area in the direction of propagation), of a spherical wavefront varies inversely with the square of the distance from the source (assuming there are no losses caused by absorption or scattering).
For example, the intensity of radiation from the Sun is 9140 watts per square meter at the distance of Mercury (0.387AU); but only 1370 watts per square meter at the distance of Earth (1AU)—a threefold increase in distance results in a ninefold decrease in intensity of radiation.
Photographers and theatrical lighting professionals use the inverse-square law to determine optimal location of the light source for proper illumination of the subject. The inverse-square law can be used only on point source light; a fluorescent lamp is not a point source and therefore one can not use the inverse-square law, as is possible with most other light sources, with a fluorescent lamp.
The lines represent the flux emanating from the source. The total number of flux lines depends on the strength of the source and is constant with increasing distance. A greater density of flux lines (lines per unit area) means a stronger field. The density of flux lines is inversely proportional to the square of the distance from the source because the surface area of a sphere increases with the square of the radius. Thus the strength of the field is inversely proportional to the square of the distance from the source.
In physics, an inverse-square law is any physical law stating that some physical quantity or strength is inversely proportional to the square of the distance from the source of that physical quantity.
Contents [hide]
1 Justification
2 Occurrences
2.1 Gravitation
2.2 Electrostatics
2.3 Light and other electromagnetic radiation
2.3.1 Example
2.4 Acoustics
2.4.1 Example
3 Field theory interpretation
4 See also
5 External links
6 Notes
[edit]Justification
The inverse-square law generally applies when some force, energy, or other conserved quantity is radiated outward radially from a source. Since the surface area of a sphere (which is 4πr 2) is proportional to the square of the radius, as the emitted radiation gets farther from the source, it must spread out over an area that is proportional to the square of the distance from the source. Hence, the radiation passing through any unit area is inversely proportional to the square of the distance from the source.
Wednesday, December 2, 2009
Subscribe to:
Posts (Atom)